10 Of The Biggest Things In The Universe

The Great Wall

4- cfa2 great wall 2

space travel space science space earth science space science space earth science science space science space earth

Like many of the structures on this list, the Great Wall, or CfA2 Great Wall, once held the distinction of being the largest known object in the universe. It was discovered by American astrophysicists Margaret Joan Geller and John Peter Huchra during a redshift survey for the Harvard-Smithsonian Center for Astrophysics, hence the name CfA. The structure is estimated to be 500 million light-years in length and 16 million in depth, and it’s shaped somewhat like the Great Wall of China.

The exact measurements of the Great Wall, however, remain a mystery. It could be much larger, stretching out to a possible 750 million light-years. The problem with determining its true size lies in its location. Like the Shapely Supercluster, the Great Wall is partially obscured by the Zone of Avoidance. The ZOA makes 20 percent of the observable universe extremely difficult to detect because dust and dense gas in the Milky Way—as well as the high concentration of stars—heavily obscure optical wavelengths.

To see through the ZOA, astronomers have to observe the universe through wavelengths not affected by the dust, such as infrared surveys, which penetrate an additional 10 percent of the ZOA. Radio surveys can also uncover what infrared cannot, as can near-infrared and X-rays, but it is frustrating for astronomers to not be able to actually see such a large portion of the universe. The ZOA leaves a number of gaps in our knowledge of the cosmos.

The Laniakea Supercluster

5- Laniakea Supercluster

space travel space science space earth science space science space earth science science space science space earth

Galaxies tend to group together in clusters. Regions where clusters are more densely packed than the universal average are called superclusters. Previously, astronomers mapped these objects by their physical locations in the universe, but a recent study has found a new way of mapping the local universe, one that is shedding light on its unknown corners.

The new study maps the local universe and its galaxy clusters based on gravitational pull instead of position. This new method charts the positions of galaxies to infer the gravitational landscape of the universe. It’s considered superior to the old system because it allows astronomers to map the uncharted regions of the universe as well as what we can observe. Since it relies on detecting a galaxy’s influence instead of the galaxy itself, it can detect objects even if we can’t see them.

The study’s findings, which only apply to our local galaxies, are recharting the local universe. The research team now defines a supercluster based on the boundaries of its gravitational flow. It is especially meaningful for us, since it has redefined where we sit in the universe. The Milky Way was once thought to be inside the Virgo supercluster, but under the new definition, our region is only an arm of the much larger Laniakea supercluster, one of the largest objects in the universe. Stretching 520 million light-years across, it is the Earth’s new address in the universe.

Prev2 of 4Next

Leave a Reply

Your email address will not be published. Required fields are marked *